Epithelial-Mesenchymal Transition Induces Endoplasmic-Reticulum-Stress Response in Human Colorectal Tumor Cells
نویسندگان
چکیده
Tumor cells are stressed by unfavorable environmental conditions like hypoxia or starvation. Driven by the resulting cellular stress tumor cells undergo epithelial-mesenchymal transition. Additionally, cellular stress is accompanied by endoplasmic reticulum-stress which induces an unfolded protein response. It is unknown if epithelial-mesenchymal transition and endoplasmic reticulum-stress are occurring as independent parallel events or if an interrelationship exists between both of them. Here, we show that in colorectal cancer cells endoplasmic reticulum-stress depends on the induction of ZEB-1, which is a main factor of epithelial-mesenchymal transition. In the absence of ZEB-1 colorectal cancer cells cannot mount endoplasmic reticulum-stress as a reaction on cellular stress situations like hypoxia or starvation. Thus, our data suggest that there is a hierarchy in the development of cellular stress which starts with the presence of environmental stress that induces epithelial-mesenchymal transition which allows finally endoplasmic reticulum-stress. This finding highlights the central role of epithelial-mesenchymal transition during the process of tumorigenesis as epithelial-mesenchymal transition is also associated with chemoresistance and cancer stemness. Consequently, endoplasmic reticulum-stress might be a well suited target for chemotherapy of colorectal cancers.
منابع مشابه
Mesenchymal Stem Cells Trigger Epithelial to Mesenchymal Transition in the HT-29 Colorectal Cancer Cell Line
Background and Objective: Mesenchymal stem cells (MSCs) promote metastasis in colorectal cancer; however, the mechanism underlying this process is not fully understood. Epithelial to mesenchymal transition (EMT) is a key step in tumor acquisition of metastatic phenotype. We aimed to investigate the effect of MSCs on the expression of EMT markers, as well as cancer stem cell markers in HT-29 col...
متن کاملEpithelial-to-mesenchymal transition activates PERK-eIF2α and sensitizes cells to endoplasmic reticulum stress.
UNLABELLED Epithelial-to-mesenchymal transition (EMT) promotes both tumor progression and drug resistance, yet few vulnerabilities of this state have been identified. Using selective small molecules as cellular probes, we show that induction of EMT greatly sensitizes cells to agents that perturb endoplasmic reticulum (ER) function. This sensitivity to ER perturbations is caused by the synthesis...
متن کاملCrosstalk between Tumor Cells and Immune System Leads to Epithelial-Mesenchymal Transition Induction and Breast Cancer Progression
Herein, we review the current findings of how a variety of accessory cells could participate in shaping the tumor microenvironment and supporting the mechanisms by which cancer cells undertake the epithelial-mesenchymal transition (EMT). EMT, a complex of phenotypic changes, promotes cancer cell invasion and creates resistance to chemotherapies. Among the accessory cells present in the EMT, imm...
متن کاملCyclosporine triggers endoplasmic reticulum stress in endothelial cells: a role for endothelial phenotypic changes and death.
Calcineurin inhibitors cyclosporine and tacrolimus are effective immunosuppressants, but both substances have the same intrinsic nephrotoxic potential that adversely affects allograft survival in renal transplant patients and causes end-stage renal disease in other solid organ or bone marrow transplant recipients. Endothelial cells are the first biological interface between drugs and the kidney...
متن کاملThe endoplasmic reticulum may be an Achilles' heel of cancer cells that have undergone an epithelial-to-mesenchymal transition
In a recent report published in Cancer Discovery we identified a novel vulnerability of cancer cells that have undergone an epithelial-mesenchymal transition (EMT) and established that the PERK branch of the unfolded protein response is constitutively activated upon EMT. In this commentary, we summarize and provide context for our findings.
متن کامل